Selasa, 28 Maret 2017

Fungsi komposisi dan fungsi invers


PEMBAHASAN FUNGSI KOMPOSISI DAN FUNGSI INVERS



                                                Image result for gambar komposisi fungsi dan fungsi invers

Fungsi Komposisi 

Dari dua jenis fungsi f(x) dan g(x) kita dapat membentuk sebuah fungsi baru dengan menggunakan sistem operasi komposisi. operasi komposisi biasa dilambangkan dengan "o" (komposisi/bundaran). fungsi baru yang dapat kita bentuk dari f(x) dan g(x) adalah:

(g o f)(x) artinya f dimasukkan ke g
(f o g)(x) artinya g dimasukkan ke f

Contoh Soal 1:
Diketahui f(x) = 3x - 4 dan g(x) = 2x, maka tentukanlah rumus (f o g)(x) dan (g o f)(x) ...

Jawab:
(f o g)(x) = g dimasukkan ke f menggantikan x
(f o g)(x) = 3(2x)-4
(f o g)(x) = 6x - 4

(g o f)(x) = f dimasukkan ke g menggantikan x
(g o f)(x) = 2(3x-4)
(g o f)(x) = 6x-8



Syarat Fungsi Komposisi



Contoh Soal 2

Misal fungsi f dan g dinyatakan dalam pasangan terurut :
f : {(-1,4), (1,6), (3,3), (5,5)}
g : {(4,5), (5,1), (6,-1), (7,3)}
Tentukan :
a.    f o g                                     d.  (f o g) (2)
b.    g o f                                     e.  (g o f) (1)
c.    (f o g) (4)                             f.  (g o f) (4)

Jawab :
Pasangan terurut dari fungsi f dan g dapat digambarkan dengan diagram panah berikut ini
a.    (f o g) = {(4,5), (5,6), (6,4), (7,3)}


b.    (g o f) = {(-1,5), (1,-1), (3,3), (5,1)}


c.    (f o g) (4) = 5
d.    (f o g) (2) tidak didefinisikan
e.    (g o f) (1) = -1

Sifat-sifat Fungsi Komposisi

Fungsi komposisi memiliki beberapa sifat, diantaranya:

Tidak Komutatif
(g o f)(x) = (f o g)(x)

Asosiatif
(f o (g o h))(x) = ((f o g) o h)(x)]

Fungsi Identitas I(x) = x
(f o I)(x) = (I o f)(x) = f(x)


Cara Menentukan fungsi bila  fungsi komposisi dan fungsi yang lain diketahui  

Misalkan jika fungsi f dan fungsi komposisi (f o g) atau (g o f) telah diketahui maka kita dapat menentukan fungsi g. demikian juga sebaliknya.

Contoh Soal 3
Misal fungsi komposisi (f o g) (x) = -4x + 4 dan f (x) = 2x + 2.
Tentukan fungsi g (x).
Jawab :
   (f o g) (x)          = -4x + 4
      f (g (x))           = -4x + 4
2 (g (x)) + 2         = -4x + 4
        2 g (x)           = -4x + 2
           g (x)           =  -4x + 2
                                      2
           g (x)            = -2x + 1
Jadi fungsi g (x) = -2x + 1




Fungsi Invers

Apabila fungsi dari himpunan A ke B dinyatakan dengan f, maka invers dari fungsi f merupakan sebuah relasi dari himpunan A ke B. Sehingga, fungsi invers dari f : A -> B adalah f-1: B -> A. dapat disimpulkan bahwa daerah hasil dari f-1 (x) merupakan daerah asal bagi f(x) begitupun sebaliknya.

Cara menenukan fungsi invers bila fungsi f(x) telah diketahui:

Pertama
Ubah persamaan y =  f (x) menjadi bentuk x sebagai fungsi dari y

Kedua
Hasil perubahan bentuk x sebagai fungsi y itu dinamakan sebagai f-1(y)

Ketiga
Ubah y menjadi x [f-1(y) menjadi f-1(x)]


Contoh Soal:









FUNGSI DAN INVERSNYA:
Image result for gambar komposisi fungsi dan fungsi invers
DAN RUMUS-RUMUS FUNGSI KOMPOSISI:
Related image

Sekian pembahasan materi tentang fungsi komposisi dan fungsi invers, semoga membantu.


Sumber:  http://www.rumusmatematikadasar.com/2015/01/pembahasan-fungsi-komposisi-dan-fungsi-invers.html
~shinta mutia sari~

Tidak ada komentar:

Posting Komentar